宇宙链 宇宙链
Ctrl+D收藏宇宙链
首页 > BTC > 正文

Scroll联合创始人:如何从0到1构建zkEVM

作者:

时间:1900/1/1 0:00:00

演讲分成四个部分,第一部分张烨介绍了开发背景以及我们为什么首先需要zkEVM以及为什么它在最近两年间变得如此受欢迎,第二部分通过一个完整的流程,讲解如何从头开始构建zkEVM包括算术化和证明系统,第三部分通过一些有趣的研究问题来谈论了Scroll在构建zkEVM时遇到的问题,最后介绍了一些其他使用zkEVM的应用。

背景和动机

传统的Layer1区块链会有一些节点通过P2P网络共同维护。他们在收到用户的交易时,会在EVM的虚拟机内执行,读取调用合约和存储,并依照交易更新全局的状态树。

这样的架构的优势在于去中心化和安全性,缺陷就是在L1上的交易手续费昂贵,并且交易确认缓慢。

ZK-Rollup的架构中,L2网络只需将数据和验证数据正确性的证明上传至L1,其中证明通过零知识证明电路计算而来。

在早期的ZK-Rollup中,电路是针对特定应用而设计,用户需要将交易发送给不同的证明者,然后不同应用的ZK-Rollup再将自己的数据和证明提交至L1。这样带来的问题是,丧失了原先L1合约的可组合性。

Scroll所要做的是原生的zkEVM方案,是一种通用型的ZK-Rollup。这样不仅对用户而言更友好,对于开发者而言也可以获得在L1上的开发体验。当然这背后的开发难度非常之大,并且现在的证明生成的代价也非常高。

用于帐户抽象的加密基础设施Pimlico已上线Scroll:5月23日消息,用于帐户抽象的加密基础设施Pimlico已上线基于ZK Rollup的以太坊扩容网络Scroll,成为Scroll上ERC-4337钱包的首批基础设施提供商,支持钱包使用ERC-20代币赞助用户操作。[2023/5/23 15:20:13]

幸运的是,零知识证明的效率在过去两年里已经大幅提高了,这也是为什么在最近两年zkEVM变得如此受欢迎。至少有四个原因让它变得可行,第一是多项式承诺的出现,在原先Groth16证明系统下,约束的规模非常之庞大,而多项式承诺可以支持更高阶的约束,缩小证明规模;第二是查找表和自定义门的出现,可以支持更灵活的设计,使证明更加高效;第三是硬件加速方面的突破,通过GPU,FPGA和ASIC可以将证明时间缩短1-2个数量级,第四是在递归证明下,可以将多个证明压缩成一个证明,使得证明变得更小更易于验证。所以结合这四个因素,零知识证明的生成效率要比两年前高出三个数量级,这也是Scoll的起源。

根据JustinDrake的定义,zkEVM可以分为三类,第一类是语言级别的兼容,主要原因是EVM不是为ZK而设计,有很多对ZK不友好的操作码,因此会造成大量的额外开销。因此像Starkware和zkSync选择在语言层面将Solidity或者Yul编译到ZK友好的编译器中。

第二类是Scroll在做的字节码层面的兼容,是直接证明EVM的字节码处理正确与否,直接继承了以太坊的执行环境。在这里可做的一些取舍是,使用和EVM不一样的状态根,例如使用ZK友好的数据结构。Hermez和Consensys也在做类似的事情。

第三类是共识层面的兼容,这里的取舍在于不仅需要保持EVM不变,还包括储存结构等实现以太坊完全兼容,代价是需要更长的证明时间。而Scroll正在和以太坊基金会的PSE团队合作构建,来实现以太坊的ZK化

从0到1构建zkEVM

第二部分,张烨向大家展示了如何从零开始建立ZKVM。

完整流程

首先,在ZKP的前端部分,你需要通过数学的算术化来表示你的计算,最常用的就是线性的R1CS,以及Plonkish和AIR。通过算术化得到约束后,在ZKP的后端你需要运行证明算法,来证明计算正确性,这里列举了最常用的多项式交互式谕示证明(PolynomialIOP)和多项式承诺方案(PCS)。

在这里我们需要证明zkEVM,Scroll使用的是Plonkish,PlonkIOP,以及KZG的组合。

Layer2跨Rollup桥Orbiter Finance新增支持Scroll测试网:11月18日,据官方消息,Layer2 跨 Rollup 桥 Orbiter Finance 新增支持 Scroll 测试网。用户可通过该跨链桥对 Scroll 测试网进行测试体验。[2022/11/18 13:20:51]

为了理解我们为什么使用这三者的方案。我们首先从最简单的R1CS开始,R1CS中的约束,是线性组合乘以线性组合等于线性结合。你可以加上任何变量的线性组合而没有额外的开销,但是在每个约束中阶数最大是2。因此对于阶数较高的运算,需要的约束就越多。

而在Plonkish中,你需要将所有的变量填入表格,包括输入,输出以及中间变量的见证。在此之上,你可以定义不同的约束。在Plonkish中有三种类型的约束可以使用。

第一种约束是自定义门,你可以定义不同单元格之间的多项式约束关系,例如va3*vb3*vc3-vb4=0。相比R1CS来说,阶数可以更高,因为你可以定义任何一个变量的约束,并且可以定义一些非常不一样的约束。

第二种约束是Permuation,即等价性校验(equalitychecks)。可以用来检查不同单元格的等价性,常用于关联电路中的不同门,比如证明上一个门的输出等于下一个门的输入。

最后一种约束是查找表(LookupTable)。我们可以将查找表理解成变量之间存在一个关系,该关系可以表示成一个表。例如我们想要证明vc7在0-15范围内,在R1CS中你首先需要把这个数值分解为4位二进制,然后证明每位在0-1的范围内,这将需要四个约束。而在Plonkish中,你可以将所有可能的范围列在同一列,只需要证明vc7属于该列即可,这对范围证明非常高效,在zkEVM中,查找表对于证明内存读写非常有用。

动态 | 黑客入侵JavaScript库以窃取加密货币:据ZDnet消息,一名黑客获得了JavaScript库的权限,并注入了恶意代码,窃取BitPay的Copay钱包应用程序中存储的比特币和比特币现金资金。包含恶意代码的库名为Event-Stream,是用于处理Node.js流数据的JavaScript npm包。GitHub上有用户投诉称,名为right9ctrl的JavaScript库的新管理员是恶意代码的始作俑者。据悉开发人员使用恶意软件更新了模块,然后修补了问题以避免被检测到,但是已经安装它的众多软件仍然受到影响。[2018/11/27]

小结一下,Plonkish同时支持自定义门,等价性校验和查找表,可以非常灵活的满足不同的电路需要。简单对比下STARK,STARK中每一行是一个约束,约束需要表示行与行之间的状态转换,但Plonkish中的自定义约束灵活性显然更高。

现在的问题是在zkEVM中,我们如何选择前端。对于zkEVM主要有四个挑战。第一个挑战是EVM的字段是256位,这意味着需要高效得对变量进行范围约束;第二个挑战是EVM有很多ZK不友好的操作码,因此需要非常大规模的约束来证明这些操作码,例如Keccak-256;第三个挑战是内存读写问题,你需要一些有效的映射来证明你所读取的和之前所写入的是一致的;第四个挑战是EVM的执行踪迹是动态变化的,因此我们需要自定义门来适配不同的执行踪迹。出于上述的考虑,我们选择了Plonkish。

接下来,我们看zkEVM的完整流程,基于初始的全局状态树,一笔新的交易进来后,EVM会读取存储和调用的合约的字节码,根据交易生成相应的执行踪迹例如PUSH,PUSH,STORE,CALLVALUE,然后逐步执行更新全局状态,得到交易后的全局状态树。而zkEVM是将初始的全局状态树,交易本身,以及交易后的全局状态树作为输入,根据EVM的规范,来证明执行踪迹的执行正确性。

深入EVM电路细节,每一步执行踪迹都有对应的电路约束。具体来说,每一步的电路约束包含StepContext,CaseSwitch,OpcodeSpecificWitness。StepContext包含执行踪迹对应的codehash,剩余gas和计数器;CaseSwitch包含所有的操作码,所有的错误情况,以及该步的相应操作;OpcodeSpecificWitness包含了操作码所需的额外见证,例如运算数等。

以简单的加法为例,需要确保加法的操作码的控制变量sADD设置为1,其他操作码控制变量均为零。在StepContext中,通过设置gas'-gas-3=0来约束消耗的gas等于3,同理约束计数器,栈指针在该步后累加1;在CaseSwitch中,通过操作码控制变量和为1来约束该步为加法操作;在OpcodeSpecificWitness中,对运算数的实际加法进行约束。

Openledger SCR关口暂时不可用:由于OpenLedger系统维护,SCR关口将暂时不可用。维护结束后将另行通知用户。[2018/5/2]

此外还需要额外的电路约束,来保证运算数从内存读取的正确性。这里我们首先需要构建一个查找表来证明运算数属于内存。并通过内存电路(RAMCircuit)来验证内存表的正确性。

同样的方法可以适用于zk不友好的哈希函数,构建哈希函数的查找表,将执行踪迹中的哈希输入和输出映射到查找表,利用额外的哈希电路(HashCircuit)来验证哈希查找表的正确性。

现在我们来看zkEVM的电路架构,核心的EVM电路用于约束执行踪迹每一步的正确性,在一些EVM电路约束难度较大的地方,我们通过查找表来映射,包括FixedTable,KeccakTable,RAMTable,Bytecode,Transaction,BlockContext,然后利用单独的电路来约束这些查找表,例如Keccak电路用于约束Keccak表。

小结一下,zkEVM的完整工作流如下图所示。

证明系统

因为在L1上直接验证上述的EVM电路,内存电路,存储电路等,开销巨大,Scroll的证明系统采用了两层架构。

第一层负责直接证明EVM本身,需要大量的计算来生成证明。因此第一层证明系统要求支持自定义门和查找表,对硬件加速友好,在低峰值内存下并行生成计算,且验证电路规模小,可以快速验证。有前景的可选方案包括Plonky2,Starky,eSTARK,它们前端基本上都使用Plonk,但后端可能使用了FRI,并且都满足上述的四个特性。另一类可选的方案包括Zcash所开发的Halo2,以及KZG版本的Halo2。

还有一些新的证明系统也有很有前景,例如最近移除了FFT的HyperPlonk,而NOVA证明系统可以做到更小的递归证明。但它们在研究中只支持R1CS,如果他们未来可以支持Plonkish并且应用于实践,将非常实用高效。

第二层证明系统用于证明第一层证明的正确性,需要可以在EVM中高效进行验证,理想情况下,最好也是硬件加速友好并且支持transparent或者universalsetup。有前景的可选方案包括Groth16和列数较少的Plonkish证明系统。Groth16仍然是目前研究中证明效率极高的代表,而Plonkish证明系统在列数较少的情况下,也可以达到较高的证明效率。

SCRY加拿大,法国,美国,中国开发组完成独立底层双链测试:2018年3月1日,SCRY DDD项目方最新项目进度报告,SCRY加拿大,法国,美国,中国开发组完成独立底层双链测试,每一秒1800TPS,并拥有自己独立的系统钱包。完全支持已发行白皮书的SCRY协议层上业务系统搭建。[2018/3/1]

在Scroll,我们在两层证明系统中我们都采用了Halo2-KZG证明系统。因为Halo2-KZG可以支持自定义门和查找表,在GPU硬件加速下性能良好,且验证电路规模小,可以快速验证。区别在于我们在第一层证明系统中我们使用了Poseidon哈希,进一步提高证明效率,而第二层证明系统因为直接在以太坊上验证,仍然使用了Keccak哈希。Scroll也在探索多层证明系统的可能性,来进一步聚合第二层证明系统生成的聚合证明。

当前实现下,Scroll的第一层证明系统EVM电路有116列,2496个自定义门,50个查找表,最高阶数为9,1MGas下需要2^18行;而第二层证明系统的聚合电路仅有23列,1个自定义门,7个查找表,最高阶数为5,为了聚合EVM电路,内存电路,存储电路,需要2^25行。

Scroll在GPU硬件加速方面也做了非常多的研究和优化工作,对于EVM电路,优化后的GPU证明者仅需30s,相较CPU证明者提升了9倍的效率;而对于聚合电路,优化后的GPU证明者仅需149s,相较CPU提升了15倍的效率。在当前的优化条件下,1MGas第一层证明系统大约需要2分钟,第二层证明系统大约需要3分钟。

有趣的研究问题

第三部分,张烨谈论了一些Scroll在构建zkEVM过程中有趣的研究问题,从前端的算术化电路到证明者的实现。

电路

首先是电路中的随机性,因为EVM字段是256位,我们需要将其拆分成32个8位的字段,从而更高效得进行范围证明。随后我们使用随机线性组合(RandomLinearCombination,RLC)的方法,利用随机数将32个字段编码成1个,只需要验证该字段就可以验证原始的256位字段。但是问题在于随机数的生成需要在拆分字段之后,才能确保不被篡改。因此Scroll和PSE团队提出了多阶段证明者的方案,来确保在字段拆分之后,再利用随机数生成RLC,该方案被封装在了ChallengeAPI中。RLC在zkEVM中有许多应用场景,不仅可以压缩EVM字段成一个字段,也可以加密不定长的输入,或是优化查找表的布局,但仍然有许多开放性的问题需要解决。

电路方面第二个有趣的研究问题是电路布局。Scroll前端之所以采用Plonkish,是因为EVM的执行踪迹是动态变化的,需要能支持不同的约束,变化的等价性检验,而R1CS的标准化门需要更大的电路规模来实现。但Scroll目前使用了2000多个自定义门来满足动态变化的执行踪迹,也在探索如何进一步优化电路布局,包括将Opcode拆分成MicroOpcode,或是复用相同表格内的单元格。

电路方面第三个有趣的研究问题是动态规模。因为不同的操作码的电路规模不同,但为了满足动态变化的执行踪迹,每一步的操作码都需要满足最大的电路规模,例如Keccak哈希,因此我们实际上付出了额外的开销。假设我们可以使zkEVM动态适应动态变化的执行踪迹,这将节省不必要的开销。

证明者

在证明者方面,Scroll在GPU加速上已经对MSM和NTT进行了大量的优化,但现在的瓶颈转移到了见证生成和复制数据这块。因为假设MSM和NTT占据了80%的证明时间,即使硬件加速可以将这部分效率提升若干个数量级,但原先见证生成和复制数据20%的证明时间将变成新的瓶颈所在。证明者的另一个问题是需要大量的内存,因此也需要探索更便宜更去中心化的硬件方案。

同时Scroll也在探索硬件加速和证明算法方面,来提升证明者的效率。目前主要有两个大方向,或是切换至更小的域,例如使用64位的Goldilocks域,32位的梅森数等,或是坚持基于椭圆曲线的新证明系统,例如SuperNova。当然也有其他的一些别的可能路径,欢迎有想法的朋友直接联系Scroll。

安全性

在构建zkEVM时,安全性是至关重要的。PSE和Scroll共同构建的zkEVM有大约3万4千行代码,从软件工程角度,这些复杂的代码库在很长一段时间内是不可能没有漏洞的。Scroll目前在通过大量的审计,包括业内最顶尖的审计公司,来审核zkEVM的代码库。

其他使用zkEVM的应用

第四部分探讨了其他一些使用了zkEVM的应用。

在zkRollup的架构中,我们通过在L1的智能合约,来验证在L2上的n笔交易是有效的。

如果我们直接验证L1的区块,那么L1的节点就不需要重复执行交易,只需要验证每一个区块证明的有效性。这样的架构方案称为EnshrineBlockchain。目前在以太坊上直接实现难度非常之大,因为需要验证整个以太坊区块,其中会包括验证大量签名,随之带来更长的证明时间和更低的安全性。当然也已经有一些其他公链在通过递归证明,使用单个证明,来验证整个区块链,例如Mina。

因为zkEVM可以证明状态转换,它也可以被白帽所利用,来证明自己知道某些智能合约的漏洞,寻求项目方的赏金。

最后一个用例是,是通过零知识证明来证明对历史数据的声明,作为预言机来使用,目前Axiom正在做这方面的产品。最近的ETHBeijing黑客松上,GasLockR团队正是利用了这一特性,证明了历史的Gas开销。

最后,Scroll正在构建zkRollup的以太坊通用扩容解决方案,使用了非常先进的算术化电路和证明系统,并且通过硬件加速构建快速的验证器,证明递归。目前Alpha测试网已经上线,并稳定运行了很长时间。

当然仍然有一些有趣的问题需要解决,包括协议设计和机制设计,零知识工程和实际效率,欢迎大家加入Scroll一起构建!

来源:panewslab

原文:YeZhang

编译:F.F

标签:SCRROLROLLCROXSCRroll币在哪换BankRollCROW价格

BTC热门资讯
科普:什么是Layer2?

作者:火火 根据DuneAnalytics的数据,截至2022年底,以太坊主链上的日均交易数超过了170万笔,而Layer2解决方案的日均交易数也在持续增加,甚至超过了以太坊.

1900/1/1 0:00:00
详解 DeWi 项目 WiFi Map:1.5 亿用户的 App 搭上了 Web3 的列车

作者:黑米,白泽研究院 一个新兴领域正在Web3中兴起——DeWi,即去中心化无线。通过建立基于区块链技术的激励机制,借助“大众的力量”或网络运营商提供热点,用户以无需信任、无需许可和可编程的方式创建和管理去中心化的无线网络,而不再是.

1900/1/1 0:00:00
元宇宙退潮 林俊杰只是韭菜之一

已经从舆论场中消失很久的元宇宙,最新的一条消息,是林俊杰的元宇宙房产投资大跌了91%。 在2021年,元宇宙一度是几乎所有行业的宠儿。这个集合了当下所有热门概念的综合体看起来无比性感,也因此让许多从业者、投资人乃至玩咖涌入其中.

1900/1/1 0:00:00
HashKey PRO将在第二季度正式上线,支持法币交易对

金色财经报道,虚拟资产集团HashKeyGroup宣布,旗下全新的合规交易平台HashKeyPRO在第二季度正式上线。HashKeyPRO旨在为投资者提供一个坚实平台,让投资者可以安全地交易虚拟资产.

1900/1/1 0:00:00
Bankless:加密货币市场的5个看涨信号

原文:Bankless 编译:DeFi之道 市场正在繁荣,空头熊市一片狼藉。比特币和以太坊都已突破熊市交易区间,山寨币看起来也已准备好摇滚起舞!尽管从各个方向传来恐慌传闻,比如说末日预言家预言大量提现后的以太坊价格暴跌,或监管机构瞄准.

1900/1/1 0:00:00
一键生成元宇宙 AI又杀疯了

人类十几年的进步水平,AI用几个月就能轻易实现。在展示了超强的文本对话能力和一键生图功能后,AI大模型不打算停下,开始挑战搭建3D空间这一更高难度的动作。这次,Facebook母公司Meta想当一把主导者.

1900/1/1 0:00:00