选自GitHub
作者:DavidSheehan
机器之心编译
截至11月22日,比特币的价格再创历史新高,在惊讶于虚拟货币「不可战胜」的同时,我们或许能可以从这一波热潮中学到些什么。本文中,博士毕业于伦敦大学学院的DavidSheehan为我们介绍了使用Keras基于LSTM预测比特币价格走势的详细方法。在测试中,这个机器学习预测法似乎有着不错的准确度。
如果要列出2017年最为荒谬的三样事物,则一定是指尖陀螺、人工智能,当然,还有加密虚拟货币。以上是玩笑话,实际上我对虚拟货币的原理印象深刻,而且非常看好这种颠覆性技术的长期前景。我试图通过深度学习、机器学习或者说人工智能成功预测虚拟货币的价格。
我认为把深度学习和虚拟货币结合起来是非常独特的想法,但是在写本文时,我发现了一些类似的内容。这篇文章只关注比特币,但是我还想讨论一下以太币。
我们打算使用LSTM模型,一种非常适合时序数据的深度学习模型。如果你希望真正了解理论或概念,那么推荐阅读:
LSTM入门必读:从基础知识到工作方式详解
赵长鹏:币安并未出售比特币或BNB:金色财经报道,币安CEO赵长鹏推特发文称,币安并未出售比特币或BNB,并且仍然持有FTT。[2023/6/14 21:35:10]
深度|LSTM和递归网络基础教程
教程|基于Keras的LSTM多变量时间序列预测
教程|如何判断LSTM模型中的过拟合与欠拟合
深度|从任务到可视化,如何理解LSTM网络中的神经元
干货|图解LSTM神经网络架构及其11种变体
完整代码地址:https://github.com/dashee87/blogScripts/blob/master/Jupyter/2017-11-20-predicting-cryptocurrency-prices-with-deep-learning.ipynb
数据
在构建模型之前,我们需要先获取一些数据。Kaggle上的数据集非常详细地记录了近几年的比特币价格。在这个时间长度中,噪声可能盖住了信号,因此我们需要选择单日价格数据。问题在于我们可能没有充足的数据。在深度学习中,没有模型可以克服数据严重缺乏的问题。我同样不想使用静态文件,因为未来使用新数据更新模型时,这种做法会复杂化更新流程。于是,我们计划从网站和API中抓取数据。
在线经纪公司Zerodha创始人:比特币等加密货币可能会颠覆在线经纪业务:9月12日消息,在线经纪公司Zerodha的创始人兼首席执行官Nithin Kamath近期在推特上分享了他对未来交易业务可能中断的观点。Kamath表示,加密货币可能会对经纪和交易的金融空间造成严重破坏:“经常有人问我,谁能颠覆新时代的在线经纪商和交易所。我认为不会是一个新的股票交易所或另一家股票经纪公司。它很可能是一个外来者,可能是加密行业。”(News18)[2021/9/12 23:19:16]
我们将在一个模型中使用多种虚拟货币,因此从同一个数据源抓取数据或许是一个不错的主意。我们将使用coinmarketcap.com。现在,我们只需要考虑比特币和以太币,但是使用这种方法添加最新火起来的山寨币就很难了。在输入数据之前,我们必须加载一些Python包,这样会容易一些。
importpandasaspd
importtime
importseabornassns
importmatplotlib.pyplotasplt
importdatetime
中本聪学院主席:比特币是最有效的货币技术:中本聪学院主席Michael Goldstein发推称,综合考虑,比特币是最有效的货币技术。[2021/2/21 17:36:09]
importnumpyasnp
Billions项目组convertthedatestringtothecorrectdateformat
bitcoin_market_info=bitcoin_market_info.assign(Date=pd.to_datetime(bitcoin_market_info))
Billions项目组converttoint
bitcoin_market_info=bitcoin_market_info.astype('int64')
Billions项目组importtherelevantKerasmodules
fromkeras.modelsimportSequential
fromkeras.layersimportActivation,Dense
Osprey Funds推出比特币信托基金 管理费为灰度的四分之一:1月16日消息,REX Shares旗下数字资产子公司Osprey Funds将在场外交易市场推出“Osprey比特币信托(OBTC)”,收取0.49%的管理费。富达数字资产将提供托管服务。OBTC的费用大约是其主要竞争对手“灰度比特币信托(GBTC)”的四分之一,后者收费2%,价值280亿美元。合格投资者购买Osprey比特币信托的最低额度为2.5万美元。在二级市场上出售之前,该信托有一年的禁售期。Osprey Funds首席执行官Greg King表示,该公司预计将尝试将这段时间缩短至6个月。(彭博社)[2021/1/16 16:17:41]
fromkeras.layersimportLSTM
fromkeras.layersimportDropout
defbuild_model(inputs,output_size,neurons,activ_func="linear",
dropout=0.25,loss="mae",optimizer="adam"):
model=Sequential()
《富爸爸,穷爸爸》作者称美国即将崩溃 用比特币“拯救自己”:《富爸爸,穷爸爸》作者罗伯特·清崎(Robert Kiyosaki)发推表示:纽约市破产了,所有城市都需要缴纳所得税、销售税和房地产税,尤其是商业税。此外,还要为教师、消防员和警察缴纳养老金。美国要崩溃了,美联储印刷“假美元”救不了你。获得黄金、白银和比特币,拯救你自己。(U.Today)(U.Today)[2020/5/20]
model.add(LSTM(neurons,input_shape=(inputs.shape,inputs.shape)))
model.add(Dropout(dropout))
model.add(Dense(units=output_size))
model.add(Activation(activ_func))
model.compile(loss=loss,optimizer=optimizer)
returnmodel
那么,build_model函数构建了一个模型,名为model,该模型添加了一个LSTM层和全连接层。该层的形态已经调整以适合输入。该函数还包括更通用的神经网络特征,如dropout和激活函数。现在,我们只需指定LSTM层中神经元的数量和训练数据。
Billions项目组initialisemodelarchitecture
eth_model=build_model(LSTM_training_inputs,output_size=1,neurons=20)
Billions项目组trainmodelondata
Billions项目组eth_preds=np.loadtxt('eth_preds.txt')
--------------------------------------------------------------------------
Epoch50/50
6s-loss:0.0625
我们刚才构建了一个LSTM模型来预测明天的以太币收盘价。现在我们来看一下效果如何。首先检查训练集性能。代码下面的数字代表50次训练迭代后该模型在训练集上的平均绝对误差。我们可以看到模型输出就是每日收盘价。
我们不应对它的准确率感到惊讶。该模型可以检测误差来源并进行调整。事实上,获取趋近于零的训练误差并不难。我们只需要数百个神经元和数千个训练epoch。我们应该对它在测试集上的性能更感兴趣,因为测试集中是模型未见过的全新数据。
注意单点预测具备误导性,而我们的LSTM模型似乎可以在未见过的测试集上实现良好的性能。最显著的缺点是单点预测无法检测出当以太币突然上涨时必然会下跌。事实上,它一直都是失败的,只不过在这些波动点更加明显而已。预测价格一般更接近一天后的实际价格。我们还可以构建一个适用于比特币的类似的LSTM模型,测试集预测结果见下图。
如前所述,单点预测具有一定误导性。我们现在构建一个LSTM模型来预测接下来5天的虚拟货币价格。
从视觉效果上来看,预测结果没有其单点预测更加鲜明。但是,我很高兴,该模型返回了一些细微的行为;它不仅仅预测价格在一个方向的移动轨迹。因此,该模型还有很多优化空间。
现在回到单点预测,我们的深度机器人工神经模型看起来还不错,但是随机游走模型看起来也还行。与随机游走模型类似,LSTM模型对随机种子的选择很敏感。那么,如果我们想对比这两种模型,就需要把每个模型运行多次来评估模型误差。误差可以作为测试集中真实和预测收盘价的绝对差。
或许AI完全值得这些炒作!这些图显示了在进行25次不同的初始化之后,每个模型在测试集上的误差。LSTM模型对比特币和以太币价格的预测误差分别是0.04和0.05,完胜相应的随机游走模型。
只是为了打败随机游走模型的话也太low了。对比LSTM模型和更合适的时序模型岂不是更加有趣!另外,我确定很难再提升我们的LSTM模型了。可能虚拟货币价格变化没有规律吧,可能没有一个模型可以把信号和噪声分离开。以后的文章中可能会讨论这些话题。
幸运的是,你已经察觉到我对使用深度学习预测虚拟货币价格变化的怀疑态度。原因在于我们忽略了最优的框架:人类智能。很明显,预测虚拟货币价格的完美模型是:
我确定他们最终最终会找到深度学习的使用案例的。同时,你可以下载完整的Python代码构建自己的模型。
原文链接:https://dashee87.github.io/deep%20learning/python/predicting-cryptocurrency-prices-with-deep-learning/
本文为机器之心编译,转载请联系本公众号获得授权。
------------------------------------------------
加入机器之心:hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告&商务合作:bd@jiqizhixin.com
标签:LSTSTM比特币LST币是什么币STM币是什么币比特币中国官网联系方式40亿比特币能提现吗比特币最新价格行情走势
USDT是当前数字货币市场的主要计价货币之一。作为流通规模仅次于比特币的数字货币,USDT是众多数字货币投资者的避险货币.
1900/1/1 0:00:00今日最扯淡事件 1.麻吉宝上线阿里试水区块链?今日下午,阿里正式发布区块链产品“麻吉宝”,并宣布创世内测。推出瞬间,麻吉宝就在各个群里传播,下载邀请码在朋友圈横飞.
1900/1/1 0:00:00最近几天,"直播答题"迅速席卷互联网。王思聪力推的《冲顶大会》、由西瓜视频&今日头条推出的《百万英雄》、映客的《芝士超人》、一直播的《黄金十秒》……几位大咖疯狂撒币,谁都不甘落后,而这翻.
1900/1/1 0:00:00没有关注那个“3点钟”区块链社群,是不是就会错过这一轮财富高潮?尽管已经在2017年火了一年,但是春节期间媒体爆炒的“三点钟”社群,无疑让广场舞大妈都已经开始关注区块链.
1900/1/1 0:00:00原标题:为什么1元叫1块,1角叫1毛?看完这个终于明白了!大家有没有发现,在日常生活中,有很多被人约定俗成的叫法或是称谓,我们总是习惯于这样或那样的表达,却很少想过为什么.
1900/1/1 0:00:00S01E01单词量:327,按对话出现顺序*nothing>''nθi>zkgkieltsn.无,不关紧要之事,零 adv.毫不,决不 interj.什么也没有.
1900/1/1 0:00:00