宇宙链 宇宙链
Ctrl+D收藏宇宙链
首页 > Gateio > 正文

一文了解FPGA和GPU加速零知识证明计算的优缺点

作者:

时间:1900/1/1 0:00:00

零知识证明技术应用越来越广,隐私证明,计算证明,共识证明等等。在寻找更多更好的应用场景的同时,很多人逐步发现零知识证明证明性能是个瓶颈。Trapdoor Tech 团队从 2019 年开始深入研究零知识证明技术,并一直探索高效的零知识证明加速方案。GPU 或者 FPGA 是目前市面上比较常见的加速平台。本文从 MSM 的计算入手,分析 FPGA 和 GPU 加速零知识证明计算的优缺点。

ZKP 是拥有未来广泛前景的技术。越来越多的应用开始采用零知识证明技术。但 ZKP 算法比较多,各种项目使用不同的 ZKP 算法。同时,ZKP 证明的计算性能比较差。本文详细分析了 MSM 算法,椭圆曲线点加算法,蒙哥马利乘法算法等等,并对比了 GPU 和 FPGA 在 BLS 12 _ 381 曲线点加的性能差别。总的来说,在 ZKP 证明计算方面,短期 GPU 优势比较明显,Throughput 高,性价比高,具有可编程性等等。FPGA 相对来说,功耗有一定的优势。长期看,有可能出现适合 ZKP 计算的 FPGA 芯片,也可能为 ZKP 定制的 ASIC 芯片。

ZKP 是个零知识证明技术的统称(Zero Knowledge Proof)。主要由两种分类:zk-SNARK 以及 zk-STARK。zk-SNARK 目前常见的算法是 Groth 16 ,PLONK,PLOOKUP,Marlin 和 Halo/Halo 2 。zk-SNARK 算法的迭代主要是沿着两条方向: 1/ 是否需要 trusted setup 2/ 电路结构的性能。zk-STARK 算法的优势是毋需 trusted setup,但是验证计算量是对数线性的。

FTX将红杉资本股权以4500万美元售予阿布扎比主权财富基金:3月9日消息,周三提交的法庭文件显示,Alameda Research 已达成 4500 万美元的现金交易,将其在红杉资本的股份出售给阿布扎比主权财富基金。

这项交易将获得特拉华州破产法官约翰·多尔西(John Dorsey)的批准,这是该破产公司出售其早期加密和科技企业投资以偿还债权人计划的一部分。

该文件称,FTX 在收到四方的意向书并与两方就出售红杉资本基金资产进行谈判后,基于其优越的报价和在短时间内执行出售交易的能力,决定与买方签订协议。[2023/3/9 12:52:21]

就 zk-SNARK/zk-STARK 算法的应用来看,不同项目使用的零知识证明算法相对分散。zk-SNARK 算法应用中,因为 PLONK/Halo 2 算法是 universal(无需 trusted setup),应用可能越来越多。

以 PLONK 算法为例,剖析一下 PLONK 证明的计算量。

Pippenger 算法的计算过程分成两步:

1/ Scalar 切分为 Windows。如果 Scalar 是 256 bits,并且一个 Window 是 8 bits,则所有的 Scalar 切分为 256/8 = 32 个 Window。每一层的 Window,采用一个「Buckets」临时存放中间结果。GW_x 就是一层上的累加结果的点。计算 GW_x 也比较简单,依次遍历一层中的每个 Scalar,根据 Scalar 这层的值作为 Index,将对应的 G_x 加到相应的 Buckets 的位上。其实原理也比较简单,如果两个点加的系数相同,则先将两个点相加后再做一次 Scalar 加,而不需要两个点做两次 Scalar 加后再累加。

推特高管:与马斯克的交易正如预期进行:5月20日消息,推特高管们在全员会议上告知推特员工,特斯拉CEO马斯克并购推特的潜在交易按预期的速度推进。“并不存在”所谓的交易“被按暂停键”说法。推特不会让马斯克在重新谈判并购金额上如愿以偿。(财联社)[2022/5/20 3:29:35]

2/ 每个 Window 计算出来的点,再通过 double-add 的方式进行累加,从而得到最后的结果。

Pippenger 算法也有很多变形优化算法。不管怎么说,MSM 算法的底层计算就是椭圆曲线上的点加。不同的优化算法,对应不同的点加个数。

你可以从这个网站看看具有「short Weierstrass」形式的椭圆曲线上点加的各种算法。

http://www.hyperelliptic.org/EFD/g 1 p/auto-shortw-jacobian-0.html#addition-madd-2007-bl

假设两个点的 Projective 坐标分别为(x 1, y 1, z 1) 和 (x 2, y 2, z 2) ,则通过如下的计算公式可以计算出点加的结果 (x 3, y 3, z 3)。

详细给出计算过程的原因是想表明整个计算过程绝大部分是整数运算。整数的位宽取决于椭圆曲线的参数。给出一些常见的椭圆曲线的位宽:

BN 256 - 256 bits

BLS 12 _ 381 - 381 bits

BLS 12 _ 377 - 377 bits

特别注意的是,这些整数运算是在模域上的运算。模加 / 模减相对来说简单,重点看看模乘的原理和实现。

给定模域上的两个值:x 和 y。模乘计算指的是 x*y mod p。注意这些整数的位宽是椭圆曲线的位宽。模乘的经典算法是蒙哥马利乘法(Montgomery Muliplication)。在进行蒙哥马利乘法之前,被乘数需要转化为蒙哥马利表示:

蒙哥马利乘法计算公式如下:

蒙哥马利乘法实现算法又有很多:CIOS (Coarsely Integrated Operand Scanning),FIOS(Finely Integrated Operand Scanning),以及 FIPS(Finely Integrated Product Scanning)等等。本文不深入介绍各种算法实现的细节,感兴趣的读者可以自行研究。

为了对比 FPGA 以及 GPU 的本身的性能差别,选择最基本的算法实现方法:

简单的说,模乘算法可以进一步分成两种计算:大数乘法和大数加法。理解了 MSM 的计算逻辑的基础上,可以选择模乘的性能(Throughput)来对比 FPGA 和 GPU 的性能。

在这样的 FPGA 设计下,可以估算出整个 VU 9 P 能提供的在 BLS 12 _ 381 椭圆曲线点加 Throughput。一个点加(add_mix 方式)大约需要 12 个模乘。FPGA 的系统时钟为 450 M。

在同样的模乘 / 模加算法下,采用同样的点加算法,Nvidia 3090 的点加 Troughput(考虑到数据传输因素)超过 500 M/s。当然,整个计算涉及到多种算法,可能存在某些算法适合 FPGA,有些算法适合 GPU。采用一样的算法对比的原因,想对比 FPGA 和 GPU 的核心计算能力。

基于上述的结果,总结一下 GPU 和 FPGA 在 ZKP 证明性能方面的比较:

越来越多的应用开始采用零知识证明技术。但 ZKP 算法比较多,各种项目使用不同的 ZKP 算法。从我们的实践工程经验来看,FPGA 是个选项,但是目前 GPU 是个性价比高选项。FPGA 偏好确定性计算,有 latency 以及功耗的优势。GPU 可编程性高,有相对成熟的高性能计算的框架,开发迭代周期短,偏好需要 throughput 场景。

IOSG Ventures

企业专栏

阅读更多

金色财经

SevenUp DAO

金色图览

LK Venture

金色荐读

区块律动BlockBeats

标签:BSPNBSFPGZKPBSPAY价格NBS价格FPG币ZKP币

Gateio热门资讯
一文解读 APK 证明的强大功能与轻客户端实践

共识机制(Consensus Mechanism)是区块链事务达成分布式共识的算法。区块链节点共识过程中,所有节点都需要对整个区块进行签名,并将区块数据、节点公钥、签名数据等数据存储在区块中.

1900/1/1 0:00:00
ZK Validator: 2022年零知识证明领域回顾

原文: 作者:Zero Knowledge Validator随着 2022 年即将结束,我们想整理一份关于零知识技术领域进展的报告。对于整个行业来说,今年是忙碌的一年,但我们可以自信地说,2022 年是零知识证明实现突破的一年.

1900/1/1 0:00:00
耐克拥抱NFT营销 为其他进军Web3的企业带来什么经验

编译:区块链骑士 耐克进入NFT领域表明了数字营销的独特演变,这家著名的运动品牌已经将这项技术无缝整合到其NFT营销策略中,为其他企业驾驭Web3生态系统提供了宝贵的经验.

1900/1/1 0:00:00
一文详解 Parallel 如何走出 GameFi Ponzi 怪圈

今年 2 月份,由 Paradigm 领投 Web3 特许经营品牌 Parallel 的首款 TCG 游戏将进入 Closed Alpha 测试阶段,而根据 Echelon 基金会的提案投票情况.

1900/1/1 0:00:00
彭博社:加密借贷危机加剧 DCG老板“四面楚歌”

来源:彭博社 编译:比推BitpushNews Mary Liu作为数字货币集团 (Digital Currency Group) 的创始人,Barry Silbert 远非加密货币领域里最高调的人物.

1900/1/1 0:00:00
BitKeep x ParaSpace研报:2023上半年NFT交易赛道发展分析

本篇报告主要剖析了 2023 上半年 NFT 交易赛道的发展现状与之后的趋势发展得到以下结论:? NFT 市场市值波动大,但侧面证明了 NFT 市场仍然有发展前景.

1900/1/1 0:00:00